

HVU with HIS-(R)N sleeve adhesive anchor system

Concrete

Small edae distance and spacing

Corrosion resistanc e

European CE Technical conformi Approval ty

PROFIS Anchor design software

Approvals / certificates

a) All data given in this section according

ETA-05/0255, issue 2011-06-23.

Basic loading data (for a single anchor)

All data in this section applies to

- Correct setting (See setting instruction)
- No edge distance and spacing influence \overline{a}
- Steel failure ÷.
- Screw strength class 8.8 \sim
- Base material thickness, as specified in the table
- One typical embedment depth, as specified in the table
- One anchor material, as specified in the tables
- Concrete C 20/25, $f_{ck, cube} = 25$ N/mm²
- Temperate range I \sim

(min. base material temperature -40°C, max. long term/short term base material temperature: +24°C/40°C)

Installation temperature range -5°C to +40°C \overline{a}

For details see Simplified design method

Embedment depth and base material thickness for the basic loading data. Mean ultimate resistance, characteristic resistance, design resistance, recommended loads.

Mean ultimate resistance: concrete C 20/25 - $f_{\text{ck cube}}$ = 25 N/mm², anchor HIS-N

Characteristic resistance: concrete C 20/25 - $f_{ck, cube}$ = 25 N/mm², anchor HIS-N

Design resistance: concrete C 20/25 - $f_{ck,cube}$ = 25 N/mm², anchor HIS-N

Recommended loads^{a)}: concrete C 20/25 - $f_{ck, cube} = 25$ N/mm², anchor HIS-N

a) With overall partial safety factor for action $\gamma = 1.4$. The partial safety factors for action depend on the type of loading and shall be taken from national regulations.

Service temperature range

Hilti HVU adhesive may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Max short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Materials

Mechanical properties of HIS-(R)N

Material quality

Anchor dimensions

Setting

installation equipment

Setting instruction

Dry and water-saturated concrete, hammer drilling

For detailed information on installation see instruction for use given with the package of the product.

For technical data for anchors in diamond drilled holes please contact the Hilti Technical advisory service.

Curing time for general conditions

Setting details

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

- a) h: base material thickness ($h \ge h_{min}$)
- b) This is the maximum recommended torque moment to avoid splitting failure during installation for anchors with minimum spacing and/or edge distance.

Simplified design method

Simplified version of the design method according EOTA Technical Report TR 029. Design resistance according data given in ETA-05/0255, issue 2011-06-23.

- Influence of concrete strength
- ×. Influence of edge distance
- Influence of spacing
- Valid for a group of two anchors. (The method may also be applied for anchor groups with more than two \blacksquare anchors or more than one edge distance. The influencing factors must then be considered for each edge distance and spacing. The calculated design loads are then on the save side: They will be lower than the exact values according EOTA Technical Report TR 029. To avoid this, it is recommended to use the anchor design software PROFIS anchor)

The design method is based on the following simplification:

No different loads are acting on individual anchors (no eccentricity)

The values are valid for one anchor.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

Tension loading

The design tensile resistance is the lower value of

- Steel resistance:
- Combined pull-out and concrete cone resistance:

$$
N_{\text{Rd},p} = N_{\text{Rd},p}^0 \cdot f_{\text{B},p} \cdot f_{\text{h},p}
$$

- Concrete cone resistance: $N_{Rd,c} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{n,N} \cdot f_{re,N}$

 N_{Rds}

. Concrete splitting resistance (only non-cracked concrete):

 $N_{\text{Rd,sp}} = N_{\text{Rd,c}}^0 \cdot f_B \cdot f_{1,\text{sp}} \cdot f_{2,\text{sp}} \cdot f_{3,\text{sp}} \cdot f_{n,\text{sp}} \cdot f_{\text{re,N}}$

Basic design tensile resistance

Design steel resistance NRds

		Data according ETA-05/0255, issue 2011-06-23					
Anchor size		M ₈	M10	M ₁₂	M ₁₆	M20	
$N_{Rd,s}$	HIS-N	[kN]	17.5	30.7	44.7	80.3	74.1
	HIS-RN	[kN]	13.9	21.9	31.6	58.8	69.2

Design combined pull-out and concrete cone resistance $N_{\text{Rd},p} = N_{\text{Rd},p}^0 \cdot f_{\text{Rp}} \cdot f_{\text{Rp}}$

Design concrete cone resistance $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{n,N} \cdot f_{re,N}$ Design splitting resistance ^{a)} $N_{Rd,sp} = N^0_{Rd,c} \cdot f_B \cdot f_{h,N} \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{ref,N}$

a) Splitting resistance must only be considered for non-cracked concrete

Influencing factors

Influence of concrete strength on combined pull-out and concrete cone resistance

 $f_{ck, cube}$ = concrete compressive strength, measured on cubes with 150 mm side length $a)$

Influence of embedment depth on combined pull-out and concrete cone resistance

Influence of concrete strength on concrete cone resistance

f_{ck.cube} = concrete compressive strength, measured on cubes with 150 mm side length a)

Influence of edge distance^{a)}

The the edge distance shall not be smaller than the minimum edge distance c_{min} given in the table with the a) setting details. These influencing factors must be considered for every edge distance smaller than the critical edge distance.

Influence of anchor spacing a)

The anchor spacing shall not be smaller than the minimum anchor spacing s_{min} given in the table with the $a)$ setting details. This influencing factor must be considered for every anchor spacing.

Influence of embedment depth on concrete cone resistance

Influence of reinforcement

a) This factor applies only for dense reinforcement. If in the area of anchorage there is reinforcement with a spacing \geq 150 mm (any diameter) or with a diameter \leq 10 mm and a spacing \geq 100 mm, then a factor f_{re} = 1 may be applied.

Shear loading

The design shear resistance is the lower value of

 $V_{Rd,s}$

- Steel resistance:
- $V_{Rd,cp}$ = k · lower value of $N_{Rd,p}$ and $N_{Rd,c}$. Concrete pryout resistance:
- Concrete edge resistance:

 $V_{Rd,c} = V_{Rd,c}^{0} \cdot f_B \cdot f_B \cdot f_h \cdot f_4$

Basic design shear resistance

Design steel resistance VRd.s

Design concrete pryout resistance $V_{Rd,cp} = k \cdot N_{Rd,c}^{a}$

a) N_{Rd,c}: Design concrete cone resistance

Design concrete edge resistance V_{Rd c} $=V_{\text{Rdc}}^0 \cdot f_{\text{B}} \cdot f_{\text{B}} \cdot f_{\text{b}} \cdot f_{\text{A}} \cdot f_{\text{bef}} \cdot f_{\text{c}}$

a) For anchor groups only the anchors close to the edge must be considered.

Influencing factors

Influence of concrete strength

 \overline{a}) $f_{ck, cube}$ = concrete compressive strength, measured on cubes with 150 mm side length

Influence of angle between load applied and the direction perpendicular to the free edge

Influence of base material thickness

Influence of anchor spacing and edge distance a for concrete edge resistance: f_4 $f_4 = (c/h_{ef})^{1,5} \cdot (1 + s / [3 \cdot c]) \cdot 0,5$

The anchor spacing and the edge distance shall not be smaller than the minimum anchor spacing s_{min} and the a) minimum edge distance c_{min}.

Influence of embedment depth

Influence of edge distance a)

a) The edge distance shall not be smaller than the minimum edge distance c_{min} .

Combined tension and shear loading

For combined tension and shear loading see section "Anchor Design".

